Биссектрисы углов A и B параллелограмма пересекаются в точке K

Задача

Биссектрисы углов A и B параллелограмма ABCD пересекаются в точке K.

Найти площадь параллелограмма, если BC=19,  а расстояние от точки K до стороны AB равно 10.

bissektrisy-parallelogramma-peresekayutsyaДано: ABCD — параллелограмм,

AK, BK — биссектрисы углов BAD и ABC,

AK∩BK=K, KF⊥AB,

KF=10, BC=19

Найти: SABCD

Читать далее

В треугольнике биссектриса и медиана перпендикулярны

Задача

В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 8.

Найти стороны треугольника ABC.

bissektrisa-i-mediana-perpendikulyarnyДано: ΔABC,

AD — медиана, BE — биссектриса,

AD=BE=8, AD⊥BE

Найти: AB, BC, AC

Читать далее

Боковые стороны AB и CD трапеции

Задача

Боковые стороны AB и CD трапеции ABCD равны соответственно16 и 34, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB.Найти площадь трапеции.

bokovye-storony-ab-i-cd-trapeciiДано: ABCD — трапеция, AD || BC, BC=2,

AB=16, CD=34, DF — биссектриса ∠ADC, F — середина AB

Найти: SABCD

Решение:

Читать далее

На стороне треугольника как на диаметре построена окружность

Задача

На стороне BC остроугольного треугольника ABC (AB≠BC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=49, MD=42, H — точка пересечения высот треугольника ABC.

Найти AH.

Читать далее

В треугольнике ABC биссектриса угла A делит высоту

Задача

В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 5:4, считая от точки B. Найти радиус окружности, описанной около треугольника ABC, если BC=12.

Решение:

v-treugolnike-bissektrisa-delit-vysotuПусть биссектриса угла A пересекает высоту BD треугольника ABC в точке F.

По условию, BF:FD=5:4.

Рассмотрим треугольник ABD, ∠ADB=90°.

Читать далее

Биссектриса CM треугольника ABC

Задача

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=5 и MB=10. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найти CD.

bissektrisa-cm-treugolnika-abcДано: ΔABC вписан в окр.(O;R),

CM — биссектриса ∠ACB, CD — касательная к окр.(O;R),

AM=5, MB=10, CD∩AB=D

Найти: CD

Читать далее