Уравнение прямой с угловым коэффициентом

Рассмотрим три случая положения прямой в координатной плоскости.

uravnenie-pryamoj-x-a1) Если прямая параллельна оси Oy.

В этом случае все её точки имеют одинаковые абсциссы. Например, если точка пересечения прямой с осью Ox имеет абсциссу a, то для всех точек прямой верно равенство

    \[x = a\]

Это равенство является уравнением прямой, параллельной оси Oy.

Читать далее

Найти медиану треугольника по координатам вершин

Как найти медиану если даны координаты вершин треугольника?

Чтобы найти медиану треугольника по координатам его вершин, применим формулы координат середины отрезка и формулу расстояния между точками.

Рассмотрим нахождение медианы на конкретном примере.

Читать далее

Найти четвертую вершину параллелограмма

Как найти координаты 4-й вершины параллелограмма, зная координаты трёх других его вершин?

В декартовых координатах эту задачу можно решить, используя свойство диагоналей параллелограмма.

Из трёх известных вершин две являются концами одной диагонали. Находим координаты середины этой диагонали. Точка пересечения диагоналей является серединой каждой из них. Для второй диагонали находим второй конец по известным одному концу и середине.

Читать далее

Признак равенства прямоугольных треугольников по катету и гипотенузе

Теорема

(Признак равенства прямоугольных треугольников по катету и гипотенузе)

Если катет и гипотенуза одного прямоугольного треугольника соответственно равны катету и гипотенузе другого прямоугольного треугольника, то такие треугольники равны.

Читать далее

Признак равенства прямоугольных треугольников по гипотенузе и острому углу

Теорема

(Признак равенства прямоугольных треугольников по гипотенузе и острому углу)

Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого прямоугольного треугольника, то такие треугольники равны.

Читать далее