Боковые стороны AB и CD трапеции

Задача

Боковые стороны AB и CD трапеции ABCD равны соответственно16 и 34, а основание BC равно 2. Биссектриса угла ADC проходит через середину стороны AB.Найти площадь трапеции.

bokovye-storony-ab-i-cd-trapeciiДано: ABCD — трапеция, AD || BC, BC=2,

AB=16, CD=34, DF — биссектриса ∠ADC, F — середина AB

Найти: SABCD

Решение:

Читать далее

На стороне треугольника как на диаметре построена окружность

Задача

На стороне BC остроугольного треугольника ABC (AB≠BC) как на диаметре построена полуокружность, пересекающая высоту AD в точке M, AD=49, MD=42, H — точка пересечения высот треугольника ABC.

Найти AH.

Читать далее

В треугольнике ABC биссектриса угла A делит высоту

Задача

В треугольнике ABC биссектриса угла A делит высоту, проведённую из вершины B, в отношении 5:4, считая от точки B. Найти радиус окружности, описанной около треугольника ABC, если BC=12.

Решение:

v-treugolnike-bissektrisa-delit-vysotuПусть биссектриса угла A пересекает высоту BD треугольника ABC в точке F.

По условию, BF:FD=5:4.

Рассмотрим треугольник ABD, ∠ADB=90°.

Читать далее

Биссектриса CM треугольника ABC

Задача

Биссектриса CM треугольника ABC делит сторону AB на отрезки AM=5 и MB=10. Касательная к описанной окружности треугольника ABC, проходящая через точку C, пересекает прямую AB в точке D. Найти CD.

bissektrisa-cm-treugolnika-abcДано: ΔABC вписан в окр.(O;R),

CM — биссектриса ∠ACB, CD — касательная к окр.(O;R),

AM=5, MB=10, CD∩AB=D

Найти: CD

Читать далее

Уравнение описанной окружности

Как составить уравнение описанной около треугольника окружности по координатам его вершин? Как найти координаты центра описанной окружности? Как найти радиус описанной окружности, зная координаты вершин треугольника?

Решение всех этих задач сводится к одной — написать уравнение окружности, проходящей через три данные точки. Для этого достаточно подставить координаты точек (вершин треугольника) в уравнение окружности. Получим систему из трёх уравнений с тремя неизвестными: координатами центра и радиусом окружности.

Задача.

Составить уравнение описанной окружности для треугольника с вершинами в точках A(2;1), B(6;3), C(9;2).

Читать далее