Подобие прямоугольных треугольников

Подобие прямоугольных треугольников обычно доказывают, используя не общие признаки, а специальные признаки подобия для прямоугольных треугольников.

Признаки подобия прямоугольных треугольников

1- й признак подобия прямоугольных треугольников

( подобие прямоугольных треугольников по острому углу)

Если прямоугольные треугольники имеют равный острый угол, то такие треугольники подобны.

Читать далее

Признаки подобия треугольников

Признаки подобия треугольников позволяют доказать, что треугольники являются подобными, на основании 2-3 равенств (вместо 6 по определению).

В школьном курсе геометрии, как правило, изучают три признака подобия произвольных треугольников.

1-й признак подобия треугольников

( подобие треугольников по двум углам)

Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.

priznaki-podobiya-treugolnikov

Читать далее

Подобные треугольники

Два треугольника подобны, если об этом сказано в условии либо если это можно доказать по одному из признаков подобия треугольников.

Определение

Подобные треугольники — это треугольники, у которых углы равны, а стороны пропорциональны.

Читать далее

Гомотетия

Гомотетия — это преобразование, при котором каждой точке A ставится в соответствие точка A1, лежащая на прямой OA, по правилу

    \[O{A_1} = k \cdot OA,\]

где k — постоянное, отличное от нуля число, O — фиксированная точка.

Точка O называется центром гомотетии, число k — коэффициентом гомотетии.

gomotetiya

гомотетия с коэффициентом k>0

Чтобы построить четырёхугольник, гомотетичный 4-угольнику ABCD с центром гомотетии в точке O и коэффициентом k, k>0, нужно провести лучи с началом в точке O, проходящие через вершины A, B, C, D, отложить на них отрезки соответствующей длины:

Читать далее

Подобие фигур

podobnye-figuryПодобие — это понятие, характеризующее наличие одинаковой, не зависящей от размеров, формы у геометрических фигур.

Подобные фигуры — это фигуры, для которых существует взаимно-однозначное соответствие, при котором расстояние между любыми парами их соответствующих точек изменяется в одно и то же число раз.

Читать далее

При параллельном переносе точка переходит в точку

Если при параллельном переносе одна точка переходит в другую точку, какую информацию можно получить из этих данных, если координаты обеих точек известны?

Параллельный перенос, при котором точка A (x;y) переходит в точку

A1 (x1; y1), задаётся формулами:

    \[\left\{ {\begin{array}{*{20}{l}} {{x_1} = x + a}\\ {{y_1} = y + b} \end{array}} \right.\]

Читать далее