Диагональ равнобедренной трапеции делит её на два равнобедренных треугольника

Задача.

Диагональ равнобедренной трапеции делит её на два равнобедренных треугольника. Найти углы трапеции.

diagonal-ravnobedrennoj-trapecii-delit-eyoДано: ABCD — трапеция, AD∥BC, AB=CD,

треугольники ABC и ADC — равнобедренные.

Найти: углы трапеции.

Решение:

diagonal-ravnobedrennoj-trapecii-delitI.

1) Если AB=BC, то треугольник ABC — равнобедренный с основанием AC.

Если AC=AD, то треугольник ADC — равнобедренный с основанием CD.

Так как углы при основании равнобедренного треугольника равны, то ∠BAC=∠BCA, ∠ADC=∠ACD.

diagonal-ravnobedrennoj-trapecii-delit-eyo-na-treugolniki2)∠DAC=∠BCA (как внутренние накрест лежащие при AD∥BC и секущей AC).

3) Пусть ∠BAC=xº, тогда ∠BCA=xº, ∠DAC=xº.

∠BAD=∠BAC+∠DAC=2xº.

4) ∠ADC=∠BAD=2xº (как углы при основании равнобедренной трапеции).

Следовательно, ∠ACD=2xº, ∠BCD=∠BCA+∠ACD=3xº.

5) ∠BAD+∠BCD=180º (по свойству равнобедренной трапеции). Имеем уравнение:

2x+3x=180

5x=180

x=36

Значит, ∠BAD=2∙36=72º, ∠BCD=3∙36=108º.

II.

Если AB=AC, то треугольник ABC — равнобедренный с основанием BC. Тогда у него углы при основании равны: ∠B=∠BCA. Но угол B — тупой, а два тупых угла в треугольнике быть не может. Следовательно, AB не может быть равным AC (отсюда и CD не может быть равным AC, так как AB=CD по условию).

Ответ: 72º, 108º.

Добавить комментарий

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>