Теорема
(Свойство секущих)
Для каждой из секущих, проведённых из одной точки, произведение длины секущей на длину её внешней части есть величина постоянная.
Дано: окружность (O; R), AB и AC — секущие,
AB∩окр. (O; R)=F, AC∩окр. (O; R)=K
Доказать:
AB ∙ AF=AC ∙ AK
Доказательство:
I способ
Рассмотрим треугольники ABK и ACF.
∠A — общий угол;
∠ABK=∠ACF (как вписанные углы, опирающиеся на одну дугу FK).
Следовательно, треугольники ABK и ACF подобны (по двум углам).
Из подобия треугольников следует пропорциональность соответствующих сторон:
По основному свойству пропорции:
Что и требовалось доказать.
II способ
1) Проведём отрезки FK и BC.
2) Так как четырёхугольник BFKC — вписанный в окружность, то сумма его противолежащих углов равна 180º:
∠BCK+∠BFK=180º. Следовательно, ∠BFK=180º-∠BCK.
3) ∠AFK+∠BFK=180º (как смежные). Отсюда,
∠AFK=180º-∠BFK=180º-(180º-∠BCK)=180º-180º+∠BCK=∠BCK,
то есть ∠AFK=∠BCK.
4) Рассмотрим треугольники ABC и AKF.
У них ∠ACB=∠AFK (так как ∠AFK=∠BCK по доказанному), ∠A — общий угол. Следовательно, треугольники ABC и AKF — подобны (по двум углам).
Отсюда,
Что и требовалось доказать.
При решении задач будем использовать свойство секущих, а также запомним полученные в ходе доказательства теоремы факты о подобии треугольников, образованных секущими. Причем подобие треугольников ABC и AKF можно доказывать как приведённым выше способом, так и опираясь на свойство секущих.