Какими свойствами обладает высота равностороннего треугольника? Как найти высоту равностороннего треугольника через его сторону, радиусы вписанной или описанной окружностей?
Теорема 1
(свойство высоты равностороннего треугольника)
В равностороннем треугольнике высота, проведённая к любой стороне, является также его медианой и биссектрисой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC.
Так как AB=BC, треугольник ABC равнобедренный с основанием AC.
Проведём высоту BF.
По свойству равнобедренного треугольника, BF является также его медианой и биссектрисой
(то есть, AF=FC, ∠ABF=∠CBF).
Аналогично, рассмотрев треугольник ABC как равнобедренный с основанием BC и треугольник ABC — равнобедренный с основанием AB, доказываем, что высоты AK и CD являются также его медианами и биссектрисами
(то есть, BK=KC, ∠BAK=∠CAK; AD=BD, ∠ACD=∠BCD).
Что и требовалось доказать.
Теорема 2
(свойство высот равностороннего треугольника)
Все три высоты равностороннего треугольника равны между собой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC.
AK, BF и CD — его высоты.
В прямоугольных треугольниках ABF, BCD и CAK:
гипотенузы AB, BC и CA равны по условию,
∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника).
Следовательно, треугольники ABF, BCD и CAK равны (по гипотенузе и острому углу).
Из равенства треугольников следует равенство соответствующих сторон: BF=CD=AK.
Что и требовалось доказать.
Из теорем 1 и 2 следует, что в равностороннем треугольнике все высоты, медианы и биссектрисы равны между собой.
1) Найдём высоту равностороннего треугольника через его сторону.
В треугольнике ABC AB=BC=AC=a.
BF — высота, BF=h.
Рассмотрим прямоугольный треугольник ABF.
Отсюда формула высоты равностороннего треугольника через его сторону:
(2-й способ: из прямоугольного треугольника ABF по теореме Пифагора
2) Выразим высоту равностороннего треугольника через радиусы вписанной и описанной окружностей.
Точка O — центр правильного треугольника — является также центром его вписанной и описанной окружностей. Как центр вписанной окружности O — точка пересечения биссектрис треугольника. В правильном треугольнике биссектрисы и медианы совпадают. Следовательно, также является O точкой пересечения медиан.
А так как медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины, то BO:OF=2:1, то есть
BO — радиус описанной окружности, OF — вписанной: BO=R, OF=r.
Следовательно, высота равностороннего треугольника равна трём радиусам вписанной окружности:
и в полтора раза больше радиуса описанной окружности:
Всё точно. Очень понадобилось при расчётах.
Спасибо интернет !