Какими свойствами обладает биссектриса равностороннего треугольника? Как, зная сторону правильного треугольника, найти его биссектрису? Чему равна длина биссектрисы через радиус вписанной и описанной окружностей?
Теорема 1
(свойство биссектрисы равностороннего треугольника)
В равностороннем треугольнике биссектриса, проведённая к любой стороне, является также его медианой и высотой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC.
Так как AB=BC, треугольник ABC — равнобедренный с основанием AC.
Проведем биссектрису BF.
По свойству равнобедренного треугольника, BF является также его медианой и высотой.
Аналогично, треугольник ABC — равнобедренный с основанием BC, треугольник ABC — равнобедренный с основанием AB, а его биссектрисы AK и CD — еще и медианы и высоты.
Что и требовалось доказать.
Теорема 2
(свойство биссектрис равностороннего треугольника)
Все три биссектрисы равностороннего треугольника равны между собой.
Доказательство:
Пусть в треугольнике ABC AB=BC=AC.
AK, BF CD — биссектрисы треугольника ABC.
В треугольниках ABF, BCD и CAK:
- AB=BC=CA (по условию)
- ∠BAF=∠CBD=∠ACK (как углы равностороннего треугольника)
- ∠ABF=∠BCD=∠CAK (как как AK, BF CD — биссектрисы равных углов).
Значит, треугольники ABF, BCD и CAK равны (по стороне и двум прилежащим к ней углам).
Из равенства треугольников следует равенство соответствующих сторон: AK=BF=CD.
Что и требовалось доказать.
Из теорем 1 и 2 следует, что в равностороннем треугольнике все биссектрисы, медианы и высоты равны между собой.
1) Найдём биссектрису равностороннего треугольника через его сторону.
В треугольнике ABC AB=BC=AC=a.
BF — биссектриса, BF=l.
По свойствам равностороннего треугольника, BF — высота ∆ ABC, ∠A=60º.
Из прямоугольного треугольника ABF по определению синуса
Таким образом, формула биссектрисы равностороннего треугольника по его стороне:
2) Найдём биссектрису равностороннего треугольника через радиусы вписанной и описанной окружностей.
В правильном треугольнике ABC центры вписанной и описанной окружностей совпадают.
Центр вписанной окружности — точка пересечения биссектрис треугольника. Биссектрисы равностороннего треугольника также являются его медианами. Медианы треугольника в точке пересечения делятся в отношении 2 к 1, считая от вершины.
Следовательно, точка O — центр вписанной и описанной окружностей, OF — радиус вписанной окружности, OF=r, BO — радиус описанной окружности, BO=R и BO:OF=2:1.
Отсюда,
Таким образом, длина биссектрисы через радиус вписанной окружности равна
через радиус описанной окружности —