Определение угла

Что такое угол? Введём определение угла.

Определение.

Угол — это геометрическая фигура, состоящая из двух различных лучей, выходящих из одной точки.

Лучи называются сторонами угла, а их общее начало — вершиной угла.

opredelenie-ugla

Например, вершина угла BAC — точка A, стороны — лучи AB и AC.

Знак угла — ∠ — представляет собой уменьшенное изображение угла.

Запись «∠ABC» читают как «угол ABC».

Угол можно назвать одной или тремя буквами. Если буква одна, то это — вершина угла. Если букв три, то вершина вершина должна стоять посередине, а по бокам — точки, лежащие на сторонах угла:

∠B или ∠ABC или ∠CBA.

Другой способ определить угол: по названию лучей — сторон угла.

oboznachenie-uglov

∠(a; b) — угол, стороны которого — лучи a и b.

Обозначают угол дужкой.

Два угла называются равными, если они могут быть совмещены так, что совпадут их соответствующие стороны и вершины.

ravnye-ugly

 

∠BAC=∠MNK.

Равные углы обозначают равным количеством дужек.

Единицы измерения углов — градусы и радианы.

1 градус (1º) равен 1/180 доле развёрнутого угла.

Градусную меру угла измеряют с помощью транспортира.

1 радиан — величина центрального угла, опирающегося на дугу окружности, равной её радиусу.

Наглядное представление об угле в 1 радиан можно получить, если отрезать кусок нити длиной, равной радиусу окружности, и приложить эту нить к окружности. Центральный угол, опирающийся на полученную дугу, — это и есть угол в один радиан:

odin-radian

 

∠ABC=1 радиану

 

1 радиан 57º,   π радиан=180º.

Основные свойства измерения углов:

Каждый угол имеет определённую градусную меру, большую нуля.

Развёрнутый угол равен 180 градусам.

Градусная мера угла равна сумме градусных мер углов, на которые они разбиваются любым лучом, проходящим между его сторонами.

 

Иногда угол определяют как часть плоскости, заключённую между двумя лучами с общим началом.

В тех случаях, когда угол рассматривают как меру поворота луча вокруг его начала до заданного положения, величина угла может принимать любые значения, в зависимости от направления поворота как положительные, так и отрицательные.

Добавить комментарий

Можно использовать следующие HTML-теги и атрибуты: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>