Если у параллелограмма диагонали перпендикулярны |

Если у параллелограмма диагонали перпендикулярны

Теорема.

(1-й признак ромба)

Если у параллелограмма диагонали взаимно перпендикулярны, то он является ромбом.

esli diagonali parallelogramma perpendikulyarnyi

 

Дано:

ABCD — параллелограмм,

AC и BD — диагонали,

    \[AC \bot BD.\]

Доказать:

ABCD — ромб.

Доказательство:

esli u parallelogramma diagonali perpendikulyarnyi

 

1) Рассмотрим треугольники ABO и CBO.

∠AOB=∠COB=90º (так как по условию диагонали AC и BD перпендикулярны).

AO=CO (так как диагонали параллелограмма в точке пересечения делятся пополам).

BO — общий катет.

Следовательно, треугольники ABO и CBO равны (по двум катетам).

u parallelogramma diagonali perpendikulyarnyi

 

 

2) Из равенства треугольников следует равенство их соответствующих сторон:

AB=BC.

 

 

3) CD=AB, AD=BC (как противолежащие стороны параллелограмма).

4) Имеем: ABCD — параллелограмм (по условию),

AB=BC=AD=CD (по доказанному).

Следовательно, ABCD- ромб (по определению).

Что и требовалось доказать.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *