Уравнение окружности с центром в точке (a;b) и радиусом R в прямоугольной системе координат имеет вид
Доказательство:
1. Пусть в прямоугольной системе координат задана окружность с центром в точке A (a;b) и радиусом R (R>0).
Чтобы составить уравнение этой окружности, выберем на окружности произвольную точку B (x;y).
По определению окружности, расстояние от центра до любой точки окружности равно радиусу R, то есть AB=R.
По формуле расстояния между точками
откуда
Так как B (x;y) — произвольная точка окружности, координаты любой точки окружности удовлетворяют этому уравнению.
2. Если пара чисел (xo;yo) удовлетворяет данному уравнению, то
А это значит, что расстояние между точками C(xo;yo) и A(a;b) равно R. Значит, точка C(xo;yo) принадлежит окружности с центром в точке A(a;b) и радиусом R.
Следовательно, данное уравнение фигуры является уравнением окружности.
Что и требовалось доказать.