Угол между медианой и высотой в прямоугольном треугольнике |

Угол между медианой и высотой в прямоугольном треугольнике

Как найти угол между медианой и высотой в прямоугольном треугольнике, если известны его острые углы?

Острые углы прямоугольного треугольника равны α и β (β>α). Найти угол между медианой и высотой, проведенными из вершины прямого угла.

ugol-mezhdu-medianoj-i-vysotoj-v-pryamougolnom-treugolnikeДано: ∆ ABC, ∠C=90º,

CK — медиана,

CF- высота,

∠A=α, ∠B=β, β>α.

Найти: ∠FCK.

Решение:

Так как сумма острых углов прямоугольного треугольника равна 90º, в треугольнике ABC ∠A+∠B=90º, то есть α+β=90º. Значит, β=90º-α.

По свойству прямоугольного треугольника,

    \[CK = \frac{1}{2}AB, \Rightarrow CK = AK\]

Следовательно, треугольник ACK- равнобедренный с основанием AC. Отсюда, ∠ACK=∠A=α (как углы при основании равнобедренного треугольника).

ugol-mezhdu-medianoj-i-vysotoj-provedennymi-iz-pryamogo-uglaРассмотрим треугольник ACF — прямоугольный (∠CFA=90º, так как CF — высота).

∠A+∠ACF=90º, откуда ∠ACF=90º-∠A=90º-α=β.

∠FCK=∠ACF-∠ACK=β-α.

 

Вывод: угол между медианой и высотой, проведёнными к гипотенузе, равен разности острых углов прямоугольного треугольника.

Поскольку две другие высоты прямоугольного треугольника совпадают с его катетами, то угол между медианой и высотой, проведённой к катету, есть угол между медианой и другим катетом. Для нахождения этих углов требуются дополнительные данные.

ugol-mezhdu-medianoj-i-vysotoj-pryamougolnyj-treugolnik∠CBP — угол между медианой BP и высотой BC

(высота BC является также катетом).

 

 

ugol-mezhdu-medianoj-i-katetom∠CAE — угол между медианой AE и высотой AC

(высота AC является катетом).

 

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *