В любом треугольнике все три высоты пересекаются в одной точке. Все высоты в остроугольном треугольнике лежат внутри треугольника (как и точка пересечения высот).
Задача.
Высоты BB1 и CC1 остроугольного треугольника ABC пересекаются в точке E. Доказать, что углы BB1C1 и BCC1 равны; углы B1C1С и BB1C равны.
Дано: ΔABC — остроугольный,
BB1⊥AC, CC1⊥AB, BB1∩CC1=E
Доказать: ∠BB1C1=∠BCC1;
2)∠B1C1С=∠BB1C
Доказательство:
Около любого треугольника можно описать окружность. Центр окружности, описанной около прямоугольного треугольника, лежит на середине его гипотенузы. Радиус такой окружности равен половине гипотенузы.
Центр описанной около прямоугольного треугольника BB1C окружности лежит на середине гипотенузы BC, радиус этой окружности равен половине BC.
Центр описанной около прямоугольного треугольника BCC1 окружности — середина гипотенузы BC, радиус равен половине BC.
Значит эти треугольники вписаны в одну и ту же окружность.
Следовательно, точки B, C, B1 и C1лежат на одной окружности.
Отсюда:
∠BB1C1=∠BCC1 (как вписанные углы, опирающиеся на одну дугу BC1);
∠B1C1С=∠B1BC (как вписанные углы, опирающиеся на одну дугу B1C).
Что и требовалось доказать.
То есть решение такого рода задач начинаем с поиска прямоугольных треугольников с общей гипотенузой.
Здравствуйте!
во втором случае: Угол ВВ1С — прямой, имелся в виду угол В1ВС, как опирающийся на дугу В1С
Спасибо, подкорректировала.