Какими свойствами обладает вписанная в ромб окружность? Как найти её радиус?
Центр вписанной в ромб окружности — точка пересечения его диагоналей.
Радиус вписанной в ромб окружности можно найти по общей формуле
где S — площадь ромба, p — его полупериметр.
Так как полупериметр ромба равен p=2a, где a — сторона ромба, эту формулу можно записать как
С учётом формул для нахождения площади ромба:
где α — угол ромба (причем α может быть как острым, так и тупым).
где d1и d2 — диагонали ромба.
Таким образом, еще две формулы радиуса вписанной в ромб окружности:
Так как диаметр вписанной окружности равен высоте ромба, радиус равен половине высоты ромба:
Если известно, что точка касания вписанной окружности делит сторону ромба на отрезки, то радиус можно выразить через длины этих отрезков.
Так как диагонали ромба взаимно перпендикулярны и радиус, проведённый в точку касания, перпендикулярен стороне, то по свойству высоты прямоугольного треугольника из треугольника AOD имеем
Следовательно, радиус вписанной в ромб окружности есть среднее пропорциональное между отрезками, на которые делит сторону точка касания: