Уравнение прямой в отрезках на осях позволяет строить прямую в координатной плоскости без каких-либо дополнительных вычислений.
Рассмотрим общее уравнение прямой
при условии a≠0, b≠0, c≠0 (то есть прямая не параллельна ни одной из осей координат и не проходит через начало отсчёта).
Перепишем уравнение в виде
и разделим обе части на -с:
Отсюда
Обозначим
получим уравнение
Это — уравнение прямой в отрезках на осях, так как числа m и n соответствуют длинам отрезков (с соответствующими знаками), которые прямая отсекает на осях координат (считая от начала отсчёта).
В самом деле, в точке пересечения с осью Ox y=0:
В точке пересечения с осью Oy x=0:
Примеры.
Построить прямую:
Решение:
1)
Прямая
отсекает на оси Ox отрезок -2, на оси Oy — отрезок 4.
Отмечаем на координатной плоскости точки (-2; 0) и (0;4) и проводим через них прямую.
2)
Прямая
отсекает на оси Ox отрезок 3, на оси Oy — отрезок -6.
Отмечаем точки (3;0) и (0;-6) и проводим через них прямую.